TY - JOUR
T1 - Influencing factors of droplet aggregation on hierarchical wedge-shaped functional surfaces
AU - Wang, Shuai
AU - Peng, Zhilong
AU - Li, Jianjun
AU - Yang, Yazheng
AU - Wang, Chao
AU - Chen, Shaohua
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Spontaneous droplet aggregation has great potential applications in liquid transportation, droplet-based microfluidics and water collection in deserts. Several novel hierarchical functional surfaces have been well prepared experimentally, on which small droplets would aggregate to form large droplets. The common feature of the hierarchical surface is wedge-shaped functional zone. However, how to guarantee the stability of water collecting function in real design and application is still lack of theoretical guidance. Based on molecular dynamics simulations, numerical experiments are systematically carried out in the present paper. Several important influencing factors of droplet spontaneous aggregation are studied. It is found that three typical size-dependent moving patterns of droplets may exist on such a hierarchical functional surface, i.e. lingering, pinning and directional transporting. The physical mechanism is further revealed for each pattern in terms of potential energy, which significantly depends on the wedge angle, direction of the wedge and symmetry of the bifurcation of each level. In order to achieve spontaneous droplet aggregation effectively, three conditions need to be met: a relatively small wedge angle at each level, wedges in the same direction at different levels, and asymmetric arrangement of wedges at the same level. A three-level functional surface is further numerically designed, which can realize water collection successfully. The results in this paper should be useful for the precise design of hierarchical functional surfaces of water collection in practical application.
AB - Spontaneous droplet aggregation has great potential applications in liquid transportation, droplet-based microfluidics and water collection in deserts. Several novel hierarchical functional surfaces have been well prepared experimentally, on which small droplets would aggregate to form large droplets. The common feature of the hierarchical surface is wedge-shaped functional zone. However, how to guarantee the stability of water collecting function in real design and application is still lack of theoretical guidance. Based on molecular dynamics simulations, numerical experiments are systematically carried out in the present paper. Several important influencing factors of droplet spontaneous aggregation are studied. It is found that three typical size-dependent moving patterns of droplets may exist on such a hierarchical functional surface, i.e. lingering, pinning and directional transporting. The physical mechanism is further revealed for each pattern in terms of potential energy, which significantly depends on the wedge angle, direction of the wedge and symmetry of the bifurcation of each level. In order to achieve spontaneous droplet aggregation effectively, three conditions need to be met: a relatively small wedge angle at each level, wedges in the same direction at different levels, and asymmetric arrangement of wedges at the same level. A three-level functional surface is further numerically designed, which can realize water collection successfully. The results in this paper should be useful for the precise design of hierarchical functional surfaces of water collection in practical application.
KW - Functional surface
KW - Hierarchical wedge-shaped zone
KW - Influencing factors
KW - Spontaneous droplet aggregation
KW - Water collection
UR - http://www.scopus.com/inward/record.url?scp=85079641292&partnerID=8YFLogxK
U2 - 10.1016/j.commatsci.2020.109616
DO - 10.1016/j.commatsci.2020.109616
M3 - Article
AN - SCOPUS:85079641292
SN - 0927-0256
VL - 175
JO - Computational Materials Science
JF - Computational Materials Science
M1 - 109616
ER -