TY - JOUR
T1 - Influence of temperature on mechanical properties of P(BAMO-r-THF) elastomer
AU - Zhai, Jinxian
AU - Zhao, Hanpeng
AU - Guo, Xiaoyan
AU - Li, Xiaodong
AU - Song, Tinglu
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/11
Y1 - 2020/11
N2 - The relationship between temperature and the mechanical properties of an end cross-linked equal molar random copolyether elastomer of 3,3-bis(azidomethyl)oxetane and tetrahydrofuran (P(BAMO-r-THF)) was investigated. During this investigation, the performances of two P(BAMO-r-THF) elastomers with different thermal histories were compared at different temperatures. The elastomer as prepared at 20◦C (denoted as S0) exhibited semi-crystallization morphology. Wide angle X-ray diffraction analysis indicated that the crystal grains within elastomer S0 result from the crystallization of BAMO micro-blocks embedded in P(BAMO-r-THF) polymeric chains, and the crystallinity is temperature irreversible under static conditions. After undergoing a heating-cooling cycle, this elastomer became an amorphous elastomer (denoted as S1). Regarding mechanical properties, at 20◦C, break strains and stresses of 315 ± 22% and 0.46 ± 0.01 MPa were obtained for elastomer S0; corresponding values of 294 ± 6% and 0.32 ± 0.02 MPa were obtained for elastomer S1. At −40◦C, these strains and stresses simultaneously increased to 1085 ± 21% and 8.90 ± 0.72 MPa (S0) and 1181 ± 25% and 10.23 ± 0.44 MPa (S1), respectively, owing to the strain-induced crystallization of BAMO micro-blocks within the P(BAMO-r-THF) polymeric chains.
AB - The relationship between temperature and the mechanical properties of an end cross-linked equal molar random copolyether elastomer of 3,3-bis(azidomethyl)oxetane and tetrahydrofuran (P(BAMO-r-THF)) was investigated. During this investigation, the performances of two P(BAMO-r-THF) elastomers with different thermal histories were compared at different temperatures. The elastomer as prepared at 20◦C (denoted as S0) exhibited semi-crystallization morphology. Wide angle X-ray diffraction analysis indicated that the crystal grains within elastomer S0 result from the crystallization of BAMO micro-blocks embedded in P(BAMO-r-THF) polymeric chains, and the crystallinity is temperature irreversible under static conditions. After undergoing a heating-cooling cycle, this elastomer became an amorphous elastomer (denoted as S1). Regarding mechanical properties, at 20◦C, break strains and stresses of 315 ± 22% and 0.46 ± 0.01 MPa were obtained for elastomer S0; corresponding values of 294 ± 6% and 0.32 ± 0.02 MPa were obtained for elastomer S1. At −40◦C, these strains and stresses simultaneously increased to 1085 ± 21% and 8.90 ± 0.72 MPa (S0) and 1181 ± 25% and 10.23 ± 0.44 MPa (S1), respectively, owing to the strain-induced crystallization of BAMO micro-blocks within the P(BAMO-r-THF) polymeric chains.
KW - Aggregation morphology
KW - BAMO micro-block
KW - Mechanical properties
KW - P(BAMO-r-THF) elastomer
KW - Strain-induced crystallization
UR - http://www.scopus.com/inward/record.url?scp=85094590951&partnerID=8YFLogxK
U2 - 10.3390/polym12112507
DO - 10.3390/polym12112507
M3 - Article
AN - SCOPUS:85094590951
SN - 2073-4360
VL - 12
SP - 1
EP - 10
JO - Polymers
JF - Polymers
IS - 11
M1 - 2507
ER -