Incorporating the Nanoscale Encapsulation Concept from Liquid Electrolytes into Solid-State Lithium-Sulfur Batteries

Xin Gao, Xueli Zheng, Jingyang Wang, Zewen Zhang, Xin Xiao, Jiayu Wan, Yusheng Ye, Lien Yang Chou, Hiang Kwee Lee, Jiangyan Wang, Rafael A. Vilá, Yufei Yang, Pu Zhang, Lin Wang Wang, Yi Cui*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

38 引用 (Scopus)

摘要

Solid-state Li-S batteries are attractive due to their high energy density and safety. However, it is unclear whether the concepts from liquid electrolytes are applicable in the solid state to improve battery performance. Here, we demonstrate that the nanoscale encapsulation concept based on Li2S@TiS2 core-shell particles, originally developed in liquid electrolytes, is effective in solid polymer electrolytes. Using in situ optical cell and sulfur K-edge X-ray absorption, we find that polysulfides form and are well-trapped inside individual particles by the nanoscale TiS2 encapsulation. This TiS2 encapsulation layer also functions to catalyze the oxidation reaction of Li2S to sulfur, even in solid-state electrolytes, proven by both experiments and density functional theory calculations. A high cell-level specific energy of 427 W·h·kg-1 is achieved by integrating the Li2S@TiS2 cathode with a poly(ethylene oxide)-based electrolyte and a lithium metal anode. This study points to the fruitful direction of borrowing concepts from liquid electrolytes into solid-state batteries.

源语言英语
页(从-至)5496-5503
页数8
期刊Nano Letters
20
7
DOI
出版状态已出版 - 8 7月 2020
已对外发布

指纹

探究 'Incorporating the Nanoscale Encapsulation Concept from Liquid Electrolytes into Solid-State Lithium-Sulfur Batteries' 的科研主题。它们共同构成独一无二的指纹。

引用此