Improving Transferability for Domain Adaptive Detection Transformers

Kaixiong Gong, Shuang Li*, Shugang Li, Rui Zhang, Chi Harold Liu, Qiang Chen

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

19 引用 (Scopus)

摘要

DETR-style detectors stand out amongst in-domain scenarios, but their properties in domain shift settings are under-explored. This paper aims to build a simple but effective baseline with a DETR-style detector on domain shift settings based on two findings. For one, mitigating the domain shift on the backbone and the decoder output features excels in getting favorable results. For another, advanced domain alignment methods in both parts further enhance the performance. Thus, we propose the Object-Aware Alignment (OAA) module and the Optimal Transport based Alignment (OTA) module to achieve comprehensive domain alignment on the outputs of the backbone and the detector. The OAA module aligns the foreground regions identified by pseudo-labels in the backbone outputs, leading to domain-invariant base features. The OTA module utilizes sliced Wasserstein distance to maximize the retention of location information while minimizing the domain gap in the decoder outputs. We implement the findings and the alignment modules into our adaptation method, and it benchmarks the DETR-style detector on the domain shift settings. Experiments on various domain adaptive scenarios validate the effectiveness of our method.

源语言英语
主期刊名MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia
出版商Association for Computing Machinery, Inc
1543-1551
页数9
ISBN(电子版)9781450392037
DOI
出版状态已出版 - 10 10月 2022
活动30th ACM International Conference on Multimedia, MM 2022 - Lisboa, 葡萄牙
期限: 10 10月 202214 10月 2022

出版系列

姓名MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia

会议

会议30th ACM International Conference on Multimedia, MM 2022
国家/地区葡萄牙
Lisboa
时期10/10/2214/10/22

指纹

探究 'Improving Transferability for Domain Adaptive Detection Transformers' 的科研主题。它们共同构成独一无二的指纹。

引用此