TY - GEN
T1 - Improving Knowledge-aware Recommendation with Multi-level Interactive Contrastive Learning
AU - Zou, Ding
AU - Wei, Wei
AU - Wang, Ziyang
AU - Mao, Xian Ling
AU - Zhu, Feida
AU - Fang, Rui
AU - Chen, Dangyang
N1 - Publisher Copyright:
© 2022 ACM.
PY - 2022/10/17
Y1 - 2022/10/17
N2 - Incorporating Knowledge Graphs (KG) into recommeder system as side information has attracted considerable attention. Recently, the technical trend of Knowledge-aware Recommendation (KGR) is to develop end-to-end models based on graph neural networks (GNNs). However, the extremely sparse user-item interactions significantly degrade the performance of the GNN-based models, from the following aspects: 1) the sparse interaction, itself, means inadequate supervision signals and limits the supervised GNN-based models; 2) the combination of sparse interactions (CF part) and redundant KG facts (KG part) further results in an unbalanced information utilization. Besides, the GNN paradigm aggregates local neighbors for node representation learning, while ignoring the non-local KG facts and making the knowledge extraction insufficient. Inspired by the recent success of contrastive learning in mining supervised signals from data itself, in this paper, we focus on exploring contrastive learning in KGR and propose a novel multi-level interactive contrastive learning mechanism, to alleviate the aforementioned challenges. Different from traditional contrastive learning methods which contrast nodes of two generated graph views, interactive contrastive mechanism conducts layer-wise self-supervised learning by contrasting layers of different parts within graphs, which is also an "interaction"action. Specifically, we first construct local and non-local graphs for user/item in KG, exploring more KG facts for KGR. Then an intra-graph level interactive contrastive learning is performed within each local/non-local graph, which contrasts layers of the CF and KG parts, for more consistent information leveraging. Besides, an inter-graph level interactive contrastive learning is performed between the local and non-local graphs, for sufficiently and coherently extracting non-local KG signals. Extensive experiments conducted on three benchmark datasets show the superior performance of our proposed method over the state-of-the-arts. The implementations are available at: https://github.com/CCIIPLab/KGIC.
AB - Incorporating Knowledge Graphs (KG) into recommeder system as side information has attracted considerable attention. Recently, the technical trend of Knowledge-aware Recommendation (KGR) is to develop end-to-end models based on graph neural networks (GNNs). However, the extremely sparse user-item interactions significantly degrade the performance of the GNN-based models, from the following aspects: 1) the sparse interaction, itself, means inadequate supervision signals and limits the supervised GNN-based models; 2) the combination of sparse interactions (CF part) and redundant KG facts (KG part) further results in an unbalanced information utilization. Besides, the GNN paradigm aggregates local neighbors for node representation learning, while ignoring the non-local KG facts and making the knowledge extraction insufficient. Inspired by the recent success of contrastive learning in mining supervised signals from data itself, in this paper, we focus on exploring contrastive learning in KGR and propose a novel multi-level interactive contrastive learning mechanism, to alleviate the aforementioned challenges. Different from traditional contrastive learning methods which contrast nodes of two generated graph views, interactive contrastive mechanism conducts layer-wise self-supervised learning by contrasting layers of different parts within graphs, which is also an "interaction"action. Specifically, we first construct local and non-local graphs for user/item in KG, exploring more KG facts for KGR. Then an intra-graph level interactive contrastive learning is performed within each local/non-local graph, which contrasts layers of the CF and KG parts, for more consistent information leveraging. Besides, an inter-graph level interactive contrastive learning is performed between the local and non-local graphs, for sufficiently and coherently extracting non-local KG signals. Extensive experiments conducted on three benchmark datasets show the superior performance of our proposed method over the state-of-the-arts. The implementations are available at: https://github.com/CCIIPLab/KGIC.
KW - contrastive learning
KW - knowledge graph
KW - recommendation
UR - http://www.scopus.com/inward/record.url?scp=85140796741&partnerID=8YFLogxK
U2 - 10.1145/3511808.3557358
DO - 10.1145/3511808.3557358
M3 - Conference contribution
AN - SCOPUS:85140796741
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 2817
EP - 2826
BT - CIKM 2022 - Proceedings of the 31st ACM International Conference on Information and Knowledge Management
PB - Association for Computing Machinery
T2 - 31st ACM International Conference on Information and Knowledge Management, CIKM 2022
Y2 - 17 October 2022 through 21 October 2022
ER -