Implicitly - supervised fuzzy pattern recognition

Kaoru Hirota*, Witold Pedrycz

*此作品的通讯作者

科研成果: 会议稿件论文同行评审

摘要

Introduced is a new model of fuzzy pattern recognition where data available about class membership are given implicitly rather than explicitly. While the explicit classification training set conveys complete details about class membership, the implicit format of classification lends itself to more synthetic forms of classification outcomes (such as those expressed in terms of similarities between some pairs of patterns). The relevant architectures are proposed along with the pertinent learning schemes.

源语言英语
65-69
页数5
出版状态已出版 - 1994
已对外发布
活动Proceedings of the 1994 1st International Joint Conference of NAFIPS/IFIS/NASA - San Antonio, TX, USA
期限: 18 12月 199421 12月 1994

会议

会议Proceedings of the 1994 1st International Joint Conference of NAFIPS/IFIS/NASA
San Antonio, TX, USA
时期18/12/9421/12/94

指纹

探究 'Implicitly - supervised fuzzy pattern recognition' 的科研主题。它们共同构成独一无二的指纹。

引用此

Hirota, K., & Pedrycz, W. (1994). Implicitly - supervised fuzzy pattern recognition. 65-69. 论文发表于 Proceedings of the 1994 1st International Joint Conference of NAFIPS/IFIS/NASA, San Antonio, TX, USA.