Implanting Atomic Cobalt within Mesoporous Carbon toward Highly Stable Lithium–Sulfur Batteries

Jin Xie, Bo Quan Li, Hong Jie Peng, Yun Wei Song, Meng Zhao, Xiao Chen, Qiang Zhang, Jia Qi Huang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

340 引用 (Scopus)

摘要

Lithium–sulfur (Li–S) batteries hold great promise to serve as next-generation energy storage devices. However, the practical performances of Li–S batteries are severely limited by the sulfur cathode regarding its low conductivity, huge volume change, and the polysulfide shuttle effect. The first two issues have been well addressed by introducing mesoporous carbon hosts to the sulfur cathode. Unfortunately, the nonpolar nature of carbon materials renders poor affinity to polar polysulfides, leaving the shuttling issue unaddressed. In this contribution, atomic cobalt is implanted within the skeleton of mesoporous carbon via a supramolecular self-templating strategy, which simultaneously improves the interaction with polysulfides and maintains the mesoporous structure. Moreover, the atomic cobalt dopants serve as active sites to improve the kinetics of the sulfur redox reactions. With the atomic-cobalt-decorated mesoporous carbon host, a high capacity of 1130 mAh gS −1 at 0.5 C and a high stability with a retention of 74.1% after 300 cycles are realized. Implanting atomic metal in mesoporous carbon demonstrates a feasible strategy to endow nanomaterials with targeted functions for Li–S batteries and broad applications.

源语言英语
文章编号1903813
期刊Advanced Materials
31
43
DOI
出版状态已出版 - 1 10月 2019

指纹

探究 'Implanting Atomic Cobalt within Mesoporous Carbon toward Highly Stable Lithium–Sulfur Batteries' 的科研主题。它们共同构成独一无二的指纹。

引用此