摘要
The hydrolytic decontamination of organophosphorus nerve agents can be promoted using Brønsted bases or Lewis acids, but the fabrication of catalytic materials with both Lewis acidic centers and Brønsted base sites is a great challenge due to their essential incompatibility. Herein, a facile and straightforward emulsion assisted self-assembly approach has been developed to immobilize a Brønsted basic hexaniobate cluster on the Lewis acidic zirconia. The obtained [C16H33N(CH3)3]6KHNb6O19/ZrO2 (C16N-Nb6/ZrO2) exhibits a remarkable catalytic activity for the hydrolysis of a Sarin simulant (DMNP): 100% of DMNP was converted under ambient conditions without using basic additives. Based on the control experiments and spectroscopic analyses, a possible reaction mechanism was proposed, suggesting that such excellent catalytic performance of C16N-Nb6/ZrO2 is attributed to the synergistic effect between molecular level accessible Lewis acidic ZrO2 (activating substrate molecules) and Brønsted basic hexaniobates (activating water molecules). As a broad-spectrum catalyst, C16N-Nb6/ZrO2 also shows satisfactory performance for the oxidative decontamination of a sulfur mustard simulant.
源语言 | 英语 |
---|---|
页(从-至) | 1436-1446 |
页数 | 11 |
期刊 | Inorganic Chemistry Frontiers |
卷 | 10 |
期 | 5 |
DOI | |
出版状态 | 已出版 - 13 1月 2023 |