摘要
The sensitizing ability of a catalytic system is closely related to the visible-light absorption ability, excited-state lifetime, redox potential, and electron-transfer rate of photosensitizers (PSs), however it remains a great challenge to concurrently mediate these factors to boost CO2 photoreduction. Herein, a series of Ir(III)-based PSs (Ir-1–Ir-6) were prepared as molecular platforms to understand the interplay of these factors and identify the primary factors for efficient CO2 photoreduction. Among them, less efficient visible-light absorption capacity results in lower CO yields of Ir-1, Ir-2 or Ir-4. Ir-3 shows the most efficient photocatalytic activity among these mononuclear PSs due to some comprehensive parameters. Although the Kobs of Ir-3 is ≈10 times higher than that of Ir-5, the CO yield of Ir-3 is slightly higher than that of Ir-5 due to the compensation of Ir-5’s strong visible-light-absorbing ability. Ir-6 exhibits excellent photocatalytic performance due to the strong visible-light absorption ability, comparable thermodynamic driving force, and electron transfer rate among these PSs. Remarkably, the CO2 photoreduction to CO with Ir-6 can achieve 91.5 μmol, over 54 times higher than Ir-1, and the optimized TONC-1 can reach up to 28160. Various photophysical properties of the PSs were concurrently adjusted by fine ligand modification to promote CO2 photoreduction.
源语言 | 英语 |
---|---|
文章编号 | e202312450 |
期刊 | Angewandte Chemie - International Edition |
卷 | 63 |
期 | 7 |
DOI | |
出版状态 | 已出版 - 12 2月 2024 |