Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection

Zeyang Dou, Kun Gao*, Xiaodian Zhang, Hong Wang, Junwei Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

27 引用 (Scopus)

摘要

Hyperspectral unmixing, which estimates end-members and their corresponding abundance fractions simultaneously, is an important task for hyperspectral applications. In this article, we propose a new autoencoder-based hyperspectral unmixing model with three novel components. First, we propose a new sparse prior to abundance maps. The proposed prior, called orthogonal sparse prior (OSP), is based on the observations that different abundance maps are close to orthogonal because, generally, no more than two end-members are mixed within one pixel. As opposed to the conventional norm-based sparse prior that assumes the abundance maps are independent, the proposed OSP explores the orthogonality between the abundance maps. Second, we propose the hyper-Laplacian loss to model the reconstruction error. The key observation is that the reconstruction error distribution usually has a heavy-Tailed shape, which is better modeled by the hyper-Laplacian distribution rather than the commonly used Gaussian distribution. Third, to ease the side effect of outliers for end-member initializations, we develop a data-driven approach to detect outliers from the raw hyperspectral images. Extensive experiments on both synthetic and real-world data sets show that the proposed method significantly and consistently outperforms the compared state-of-The-Art methods, with up to more than 50% improvements.

源语言英语
文章编号9037173
页(从-至)6550-6564
页数15
期刊IEEE Transactions on Geoscience and Remote Sensing
58
9
DOI
出版状态已出版 - 9月 2020

指纹

探究 'Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection' 的科研主题。它们共同构成独一无二的指纹。

引用此