Hyperspectral Target Detection by Fractional Fourier Transform

Xiaobin Zhao, Wei Li*, Tao Shan, Lu Li, Ran Tao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

Target detection in hyperspectral images (HSI) is an important technique and many target detection algorithms have been developed in recent years. The most widely detection algorithms by the original spectral characteristics may lack the ability of target signal enhancement and background suppression. This paper presents an efficient algorithm for detecting hyperspectral targets based on fractional Fourier transform (FrFT). Firstly, fractional Fourier transform primary search is used as preprocessing to obtain the better intermediate domain features with complementary characteristics between the original reflection spectrum and the Fourier transform domain. Secondly, fractional Fourier transform secondary search and constrained energy minimization (FrFT-CEM) was adopted to find an optimal fractional order to distinguish the target from the background. The proposed method has been proved to be superior in two real hyperspectral data sets.

源语言英语
主期刊名2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
1655-1658
页数4
ISBN(电子版)9781728163741
DOI
出版状态已出版 - 26 9月 2020
活动2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Virtual, Waikoloa, 美国
期限: 26 9月 20202 10月 2020

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)

会议

会议2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020
国家/地区美国
Virtual, Waikoloa
时期26/09/202/10/20

指纹

探究 'Hyperspectral Target Detection by Fractional Fourier Transform' 的科研主题。它们共同构成独一无二的指纹。

引用此