TY - JOUR
T1 - Hyperspectral Target Detection Based on Weighted Cauchy Distance Graph and Local Adaptive Collaborative Representation
AU - Zhao, Xiaobin
AU - Li, Wei
AU - Zhao, Chunhui
AU - Tao, Ran
N1 - Publisher Copyright:
© 1980-2012 IEEE.
PY - 2022
Y1 - 2022
N2 - Hyperspectral target detection in complex backgrounds is a challenging and important research topic in the remote sensing field. Traditional target detectors consider the background spectrum to obey a Gaussian distribution. However, this distribution may not meet the requirements in real hyperspectral images. In addition, the background and spatial information of most existing target detection algorithms are rarely fully utilized. Therefore, a new weighted Cauchy distance graph (WCDG) and local adaptive collaborative representation detection (CGCRD) is proposed. First, a WCDG similarity measure is designed. In order to adjust the effect of target pixels on the graph model, a weighted Cauchy distance Laplace matrix is constructed, and then the matrix is applied to the matched filter detector. Second, local adaptive collaborative representation strategy is developed. The penalty coefficient is weighted by the local spatial Euclidean distance combined with the Pearson correlation coefficient, and then the detection result is obtained based on the residual. Finally, aforementioned two strategies are fused to fully utilize the spatial and spectral information. A 176-band hyperspectral image (BIT-HSI-I) dataset is collected for the target detection task. The related algorithms are performed on the BIT-HSI-I dataset, and the detection results demonstrate that the proposed algorithm has better detection performance than other state-of-the-art algorithms.
AB - Hyperspectral target detection in complex backgrounds is a challenging and important research topic in the remote sensing field. Traditional target detectors consider the background spectrum to obey a Gaussian distribution. However, this distribution may not meet the requirements in real hyperspectral images. In addition, the background and spatial information of most existing target detection algorithms are rarely fully utilized. Therefore, a new weighted Cauchy distance graph (WCDG) and local adaptive collaborative representation detection (CGCRD) is proposed. First, a WCDG similarity measure is designed. In order to adjust the effect of target pixels on the graph model, a weighted Cauchy distance Laplace matrix is constructed, and then the matrix is applied to the matched filter detector. Second, local adaptive collaborative representation strategy is developed. The penalty coefficient is weighted by the local spatial Euclidean distance combined with the Pearson correlation coefficient, and then the detection result is obtained based on the residual. Finally, aforementioned two strategies are fused to fully utilize the spatial and spectral information. A 176-band hyperspectral image (BIT-HSI-I) dataset is collected for the target detection task. The related algorithms are performed on the BIT-HSI-I dataset, and the detection results demonstrate that the proposed algorithm has better detection performance than other state-of-the-art algorithms.
KW - Euclidean distance
KW - Pearson correlation coefficient
KW - hyperspectral target detection
KW - local adaptive collaborative representation
KW - matched filter
KW - weighted Cauchy distance
UR - http://www.scopus.com/inward/record.url?scp=85128601371&partnerID=8YFLogxK
U2 - 10.1109/TGRS.2022.3169171
DO - 10.1109/TGRS.2022.3169171
M3 - Article
AN - SCOPUS:85128601371
SN - 0196-2892
VL - 60
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
M1 - 5527313
ER -