Hyperspectral Image Joint Super-resolution via Implicit Neural Representation

Jizhou Zhang, Tingfa Xu*, Shenwang Jiang, Yuhan Zhang, Jianan Li*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Hyperspectral image (HSI) joint super-resolution (SR) in both spatial and spectral dimensions is an area of increasing interest in HSI processing. Although recent advances in deep learning (DL) frameworks have greatly improved the performance of joint SR reconstruction, existing methods learn discrete representations of HSI, ignoring real-world signals' continuous nature. In this paper, we propose a joint SR method based on implicit neural representation (INR), which learns local continuous representations of high spatial resolution hyperspectral images from the discrete inputs. Experiments on joint SR demonstrate that our method can achieve superior performance in comparison with state-of-the-art methods.

源语言英语
主期刊名Conference on Infrared, Millimeter, Terahertz Waves and Applications, IMT 2022
编辑Songlin Zhuang, Junhao Chu
出版商SPIE
ISBN(电子版)9781510662476
DOI
出版状态已出版 - 2023
活动2022 Conference on Infrared, Millimeter, Terahertz Waves and Applications, IMT 2022 - Xi'an, 中国
期限: 20 9月 202222 9月 2022

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
12565
ISSN(印刷版)0277-786X
ISSN(电子版)1996-756X

会议

会议2022 Conference on Infrared, Millimeter, Terahertz Waves and Applications, IMT 2022
国家/地区中国
Xi'an
时期20/09/2222/09/22

指纹

探究 'Hyperspectral Image Joint Super-resolution via Implicit Neural Representation' 的科研主题。它们共同构成独一无二的指纹。

引用此