Hyperspectral Image Denoising with Realistic Data

Tao Zhang, Ying Fu*, Cheng Li

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

25 引用 (Scopus)

摘要

The hyperspectral image (HSI) denoising has been widely utilized to improve HSI qualities. Recently, learning-based HSI denoising methods have shown their effectiveness, but most of them are based on synthetic dataset and lack the generalization capability on real testing HSI. Moreover, there is still no public paired real HSI denoising dataset to learn HSI denoising network and quantitatively evaluate HSI methods. In this paper, we mainly focus on how to produce realistic dataset for learning and evaluating HSI denoising network. On the one hand, we collect a paired real HSI denoising dataset, which consists of short-exposure noisy HSIs and the corresponding long-exposure clean HSIs. On the other hand, we propose an accurate HSI noise model which matches the distribution of real data well and can be employed to synthesize realistic dataset. On the basis of the noise model, we present an approach to calibrate the noise parameters of the given hyperspectral camera. The extensive experimental results show that a network learned with only synthetic data generated by our noise model performs as well as it is learned with paired real data. Our code and data are available at: https://github.com/ColinTaoZhang/HSIDwRD.

源语言英语
主期刊名Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
出版商Institute of Electrical and Electronics Engineers Inc.
2228-2237
页数10
ISBN(电子版)9781665428125
DOI
出版状态已出版 - 2021
活动18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, 加拿大
期限: 11 10月 202117 10月 2021

出版系列

姓名Proceedings of the IEEE International Conference on Computer Vision
ISSN(印刷版)1550-5499

会议

会议18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
国家/地区加拿大
Virtual, Online
时期11/10/2117/10/21

指纹

探究 'Hyperspectral Image Denoising with Realistic Data' 的科研主题。它们共同构成独一无二的指纹。

引用此