Hyperspectral Classification Using Heterologous Feature Alignment and Fusion

Yunhao Gao, Wei Li*, Mengmeng Zhang, Ran Tao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Despite multisource remote sensing data collaboration compensates for the limitations of hyperspectral (HS) sensors, it faces problems such as significant information differences and heterogeneity. In this paper, an alignment enhancement network (AENet) is designed for information propagation between HSI and auxiliary modalities, such as multispectral and synthetic aperture radar (SAR). Specifically, the auxiliary modalities achieve consistency projection with HS modality through spectral and spatial alignment. Therefore, feature alignment alleviates the problem of heterogeneity to a certain extent and improves fusion efficiency. Experimental results on multisource datasets demonstrate that the proposed AENet is able to provide competitive advantages.

源语言英语
主期刊名2023 13th Workshop on Hyperspectral Imaging and Signal Processing
主期刊副标题Evolution in Remote Sensing, WHISPERS 2023
出版商IEEE Computer Society
ISBN(电子版)9798350395570
DOI
出版状态已出版 - 2023
活动13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2023 - Athens, 希腊
期限: 31 10月 20232 11月 2023

出版系列

姓名Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing
ISSN(印刷版)2158-6276

会议

会议13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2023
国家/地区希腊
Athens
时期31/10/232/11/23

指纹

探究 'Hyperspectral Classification Using Heterologous Feature Alignment and Fusion' 的科研主题。它们共同构成独一无二的指纹。

引用此