Hybrid Spectral Denoising Transformer with Guided Attention

Zeqiang Lai, Chenggang Yan, Ying Fu*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

In this paper, we present a Hybrid Spectral Denoising Transformer (HSDT) for hyperspectral image denoising. Challenges in adapting transformer for HSI arise from the capabilities to tackle existing limitations of CNN-based methods in capturing the global and local spatial-spectral correlations while maintaining efficiency and flexibility. To address these issues, we introduce a hybrid approach that combines the advantages of both models with a Spatial-Spectral Separable Convolution (S3Conv), Guided Spectral Self-Attention (GSSA), and Self-Modulated Feed-Forward Network (SM-FFN). Our S3Conv works as a lightweight alternative to 3D convolution, which extracts more spatial-spectral correlated features while keeping the flexibility to tackle HSIs with an arbitrary number of bands. These features are then adaptively processed by GSSA which performs 3D self-attention across the spectral bands, guided by a set of learnable queries that encode the spectral signatures. This not only enriches our model with powerful capabilities for identifying global spectral correlations but also maintains linear complexity. Moreover, our SM-FFN proposes the self-modulation that intensifies the activations of more informative regions, which further strengthens the aggregated features. Extensive experiments are conducted on various datasets under both simulated and real-world noise, and it shows that our HSDT significantly outperforms the existing state-of-the-art methods while maintaining low computational overhead. Code is at https://github.com/Zeqiang-Lai/HSDT.

源语言英语
主期刊名Proceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
出版商Institute of Electrical and Electronics Engineers Inc.
13019-13029
页数11
ISBN(电子版)9798350307184
DOI
出版状态已出版 - 2023
活动2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, 法国
期限: 2 10月 20236 10月 2023

出版系列

姓名Proceedings of the IEEE International Conference on Computer Vision
ISSN(印刷版)1550-5499

会议

会议2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
国家/地区法国
Paris
时期2/10/236/10/23

指纹

探究 'Hybrid Spectral Denoising Transformer with Guided Attention' 的科研主题。它们共同构成独一无二的指纹。

引用此