Human-Like Autonomous Lane Change Trajectory Planning Based on Driver Risk Perception Model

Jiahao Mei, Longxi Luo*, Minghao Liu, Yu Chen

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Unmanned driving technologies have great potential in improving traffic safety and reducing driver workload, but the human driving mechanism is rarely considered. Human-like unmanned driving could meet the expectations of passengers and pedestrians, so that unmanned vehicles can be more widely accepted. However, current human-like unmanned driving methods rely heavily on historical data, only imitating the driver's behavior without fundamentally explaining the motivation behind his behavior. This study develops a driver risk perception model that describes drivers' perceptions of risk for providing an in-depth explanation of human driving mechanisms to lay a theoretical foundation for human-like driving methods. It also reveals the characteristics of the driver's perceived risk index during lane changing and its relationship with the lane change trajectory. Finally, it proposes a human-like autonomous lane change trajectory planning method, which achieves autonomous planning of human-like lane change trajectory with high fidelity by using the position and speed information of the ego vehicle and obstacles.

源语言英语
主期刊名Proceedings of 2023 IEEE International Conference on Unmanned Systems, ICUS 2023
编辑Rong Song
出版商Institute of Electrical and Electronics Engineers Inc.
524-529
页数6
ISBN(电子版)9798350316308
DOI
出版状态已出版 - 2023
活动2023 IEEE International Conference on Unmanned Systems, ICUS 2023 - Hefei, 中国
期限: 13 10月 202315 10月 2023

出版系列

姓名Proceedings of 2023 IEEE International Conference on Unmanned Systems, ICUS 2023

会议

会议2023 IEEE International Conference on Unmanned Systems, ICUS 2023
国家/地区中国
Hefei
时期13/10/2315/10/23

指纹

探究 'Human-Like Autonomous Lane Change Trajectory Planning Based on Driver Risk Perception Model' 的科研主题。它们共同构成独一无二的指纹。

引用此