Human Activity Classification Method Using a Generalized Recurrent Neural Network

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Millimeter wave radar offers advantages in scene surveillance, traffic monitoring and health monitoring due to its penetrability and privacy. Abnormal human behaviors could be identified through the radar detection and classification process. In this paper, an abnormal human activity classification method based on micro-Doppler effect is proposed. The singular vector decomposition (SVD) and principle component analysis (PCA) are extracted from simulated radar echo and fed into a Generalized Regression Neural Network (GRNN) for classification.

源语言英语
主期刊名2019 International Conference on Microwave and Millimeter Wave Technology, ICMMT 2019 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781728121680
DOI
出版状态已出版 - 5月 2019
活动11th International Conference on Microwave and Millimeter Wave Technology, ICMMT 2019 - Guangzhou, 中国
期限: 19 5月 201922 5月 2019

出版系列

姓名2019 International Conference on Microwave and Millimeter Wave Technology, ICMMT 2019 - Proceedings

会议

会议11th International Conference on Microwave and Millimeter Wave Technology, ICMMT 2019
国家/地区中国
Guangzhou
时期19/05/1922/05/19

指纹

探究 'Human Activity Classification Method Using a Generalized Recurrent Neural Network' 的科研主题。它们共同构成独一无二的指纹。

引用此