HTD-Net: A deep convolutional neural network for target detection in hyperspectral imagery

Gaigai Zhang, Shizhi Zhao, Wei Li*, Qian Du, Qiong Ran, Ran Tao

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

96 引用 (Scopus)

摘要

In recent years, deep learning has dramatically improved the cognitive ability of the network by extracting depth features, and has been successfully applied in the field of feature extraction and classification of hyperspectral images. However, it is facing great difficulties for target detection due to extremely limited available labeled samples that are insufficient to train deep networks. In this paper, a novel target detection framework for deep learning is proposed, denoted as HTD-Net. To overcome the few-training-sample issue, the proposed framework utilizes an improved autoencoder (AE) to generate target signatures, and then finds background samples which differ significantly from target samples based on a linear prediction (LP) strategy. Then, the obtained target and background samples are used to enlarge the training set by generating pixel-pairs, which is viewed as the input of a pre-designed network architecture to learn discriminative similarity. During testing, pixel-pairs of a pixel to be labeled are constructed with both available target samples and background samples. Spectral difference between these pixel-pairs is classified by the well-trained network with results of similarity measurement. The outputs from a two-branch averaged similarity scores are combined to generate the final detection. Experimental results with several real hyperspectral data demonstrate the superiority of the proposed algorithm compared to some traditional target detectors.

源语言英语
文章编号1489
期刊Remote Sensing
12
9
DOI
出版状态已出版 - 1 5月 2020

指纹

探究 'HTD-Net: A deep convolutional neural network for target detection in hyperspectral imagery' 的科研主题。它们共同构成独一无二的指纹。

引用此