HSVCNN: CNN-Based Hyperspectral Reconstruction from RGB Videos

Huiqun Li, Zhiwei Xiong, Zhan Shi, Lizhi Wang, Dong Liu, Feng Wu

科研成果: 书/报告/会议事项章节会议稿件同行评审

11 引用 (Scopus)

摘要

Hyperspectral video acquisition usually requires high complexity hardware and reconstruction algorithms. In this paper, we propose a low complexity CNN-based method for hyperspectral reconstruction from ubiquitous RGB videos, which effectively exploits the temporal redundancies within RGB videos and generates high-quality hyperspectral output. Specifically, given an RGB video, we first design an efficient motion compensation network to align the RGB frames and reduce the large motion. Then, we design a temporal-adaptive fusion network to exploit the inter-frame correlation. The fusion network has the ability to determine the optimum temporal dependency within successive frames, which further promotes the hyperspectral reconstruction fidelity. Preliminary experimental results validate the superior performance of the proposed method over previous learning-based methods. To the best of our knowledge, this is the first time that RGB videos are utilized for hyperspectral reconstruction through deep learning.

源语言英语
主期刊名2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings
出版商IEEE Computer Society
3323-3327
页数5
ISBN(电子版)9781479970612
DOI
出版状态已出版 - 29 8月 2018
活动25th IEEE International Conference on Image Processing, ICIP 2018 - Athens, 希腊
期限: 7 10月 201810 10月 2018

出版系列

姓名Proceedings - International Conference on Image Processing, ICIP
ISSN(印刷版)1522-4880

会议

会议25th IEEE International Conference on Image Processing, ICIP 2018
国家/地区希腊
Athens
时期7/10/1810/10/18

指纹

探究 'HSVCNN: CNN-Based Hyperspectral Reconstruction from RGB Videos' 的科研主题。它们共同构成独一无二的指纹。

引用此