摘要
The existence of organic micropollutants (OPMs) in water poses a considerable threat to the environment. A centralized approach towards pollutants abatement has dominated over the recent decades wherein heterogeneous Fenton-like based advanced oxidation processes can be a promising technology. The application of engineered nanomaterials offers more opportunities to enhance their catalyst properties. This study synthesizes a series of ultrathin two-dimensional (2D) Metal-organic frameworks (MOFs) nanosheets with tunable metal clusters. The formation of reactive oxygen species (•OH and 1O2) can be significantly boosted via transferring the adsorbed H2O2 onto the solid-liquid interface by systematically tuning the metal species. The Co-MOF nanosheets exhibited an ultrafast degradation kinetic for BPA with a rate of 2.23 min−1 (4.98 times higher than that of the bulk MOF) and TOF (turnover frequency) value of 9.99 min−1, which are observably greater than that of the existing materials reported to date. Density functional theory simulation and experimental results unravel the mechanism for ROS formation, which is strongly metal-depend. We further loaded the powder onto a flow-through poly (vinylidene fluoride) (PVDF) microfiltration membrane and observed that the representative OPMs could be rapidly degraded, indicating promising properties for practical application.
源语言 | 英语 |
---|---|
文章编号 | 129757 |
期刊 | Journal of Hazardous Materials |
卷 | 440 |
DOI | |
出版状态 | 已出版 - 15 10月 2022 |