TY - JOUR
T1 - High-Strain-Rate Deformation Behavior of Co0.96Cr0.76Fe0.85Ni1.01Hf0.40 Eutectic High-Entropy Alloy at Room and Cryogenic Temperatures
AU - Jiang, Kun
AU - Xiong, Zhiping
AU - Chen, Xi
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/6
Y1 - 2024/6
N2 - The deformation behaviors of Co0.96Cr0.76Fe0.85Ni1.01Hf0.40 eutectic high-entropy alloy (EHEA) under high strain rates have been investigated at both room temperature (RT, 298 K) and liquid nitrogen temperature (LNT, 77 K). The current Co0.96Cr0.76Fe0.85Ni1.01Hf0.40 EHEA exhibits a high yield strength of 740 MPa along with a high fracture strain of 35% under quasi-static loading. A remarkable positive strain rate effect can be observed, and its yield strength increased to 1060 MPa when the strain rate increased to 3000/s. Decreasing temperature will further enhance the yield strength significantly. The yield strength of this alloy at a strain rate of 3000/s increases to 1240 MPa under the LNT condition. Moreover, the current EHEA exhibits a notable increased strain-hardening ability with either an increasing strain rate or a decreasing temperature. Transmission electron microscopy (TEM) characterization uncovered that the dynamic plastic deformation of this EHEA at RT is dominated by dislocation slip. However, under severe conditions of high strain rate in conjunction with LNT, dislocation dissociation is promoted, resulting in a higher density of nanoscale deformation twins, stacking faults (SFs) as well as immobile Lomer–Cottrell (L-C) dislocation locks. These deformation twins, SFs and immobile dislocation locks function effectively as dislocation barriers, contributing notably to the elevated strain-hardening rate observed during dynamic deformation at LNT.
AB - The deformation behaviors of Co0.96Cr0.76Fe0.85Ni1.01Hf0.40 eutectic high-entropy alloy (EHEA) under high strain rates have been investigated at both room temperature (RT, 298 K) and liquid nitrogen temperature (LNT, 77 K). The current Co0.96Cr0.76Fe0.85Ni1.01Hf0.40 EHEA exhibits a high yield strength of 740 MPa along with a high fracture strain of 35% under quasi-static loading. A remarkable positive strain rate effect can be observed, and its yield strength increased to 1060 MPa when the strain rate increased to 3000/s. Decreasing temperature will further enhance the yield strength significantly. The yield strength of this alloy at a strain rate of 3000/s increases to 1240 MPa under the LNT condition. Moreover, the current EHEA exhibits a notable increased strain-hardening ability with either an increasing strain rate or a decreasing temperature. Transmission electron microscopy (TEM) characterization uncovered that the dynamic plastic deformation of this EHEA at RT is dominated by dislocation slip. However, under severe conditions of high strain rate in conjunction with LNT, dislocation dissociation is promoted, resulting in a higher density of nanoscale deformation twins, stacking faults (SFs) as well as immobile Lomer–Cottrell (L-C) dislocation locks. These deformation twins, SFs and immobile dislocation locks function effectively as dislocation barriers, contributing notably to the elevated strain-hardening rate observed during dynamic deformation at LNT.
KW - deformation twinning
KW - eutectic high entropy
KW - high-strain-rate deformation
KW - strain hardening
UR - http://www.scopus.com/inward/record.url?scp=85197263627&partnerID=8YFLogxK
U2 - 10.3390/ma17122995
DO - 10.3390/ma17122995
M3 - Article
AN - SCOPUS:85197263627
SN - 1996-1944
VL - 17
JO - Materials
JF - Materials
IS - 12
M1 - 2995
ER -