High-Speed Hyperspectral Video Acquisition by Combining Nyquist and Compressive Sampling

Lizhi Wang, Zhiwei Xiong*, Hua Huang, Guangming Shi, Feng Wu, Wenjun Zeng

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

41 引用 (Scopus)

摘要

We propose a novel hybrid imaging system to acquire 4D high-speed hyperspectral (HSHS) videos with high spatial and spectral resolution. The proposed system consists of two branches: one branch performs Nyquist sampling in the temporal dimension while integrating the whole spectrum, resulting in a high-frame-rate panchromatic video; the other branch performs compressive sampling in the spectral dimension with longer exposures, resulting in a low-frame-rate hyperspectral video. Owing to the high light throughput and complementary sampling, these two branches jointly provide reliable measurements for recovering the underlying HSHS video. Moreover, the panchromatic video can be used to learn an over-complete 3D dictionary to represent each band-wise video sparsely, thanks to the inherent structural similarity in the spectral dimension. Based on the joint measurements and the self-Adaptive dictionary, we further propose a simultaneous spectral sparse (3S) model to reinforce the structural similarity across different bands and develop an efficient computational reconstruction algorithm to recover the HSHS video. Both simulation and hardware experiments validate the effectiveness of the proposed approach. To the best of our knowledge, this is the first time that hyperspectral videos can be acquired at a frame rate up to 100fps with commodity optical elements and under ordinary indoor illumination.

源语言英语
文章编号8320303
页(从-至)857-870
页数14
期刊IEEE Transactions on Pattern Analysis and Machine Intelligence
41
4
DOI
出版状态已出版 - 1 4月 2019

指纹

探究 'High-Speed Hyperspectral Video Acquisition by Combining Nyquist and Compressive Sampling' 的科研主题。它们共同构成独一无二的指纹。

引用此