High response speed microfluidic ice valves with enhanced thermal conductivity and a movable refrigeration source

Chaorun Si, Songtao Hu, Xiaobao Cao, Weichao Wu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

10 引用 (Scopus)

摘要

Due to their ease of fabrication, facile use and low cost, ice valves have great potential for use in microfluidic platforms. For this to be possible, a rapid response speed is key and hence there is still much scope for improvement in current ice valve technology. Therefore, in this study, an ice valve with enhanced thermal conductivity and a movable refrigeration source has been developed. An embedded aluminium cylinder is used to dramatically enhance the heat conduction performance of the microfluidic platform and a movable thermoelectric unit eliminates the thermal inertia, resulting in a faster cooling process. The proposed ice valve achieves very short closing times (0.37 s at 10 μL/min) and also operates at high flow rates (1150 μL/min). Furthermore, the response time of the valve decreased by a factor of 8 when compared to current state of the art technology.

源语言英语
文章编号40570
期刊Scientific Reports
7
DOI
出版状态已出版 - 13 1月 2017

指纹

探究 'High response speed microfluidic ice valves with enhanced thermal conductivity and a movable refrigeration source' 的科研主题。它们共同构成独一无二的指纹。

引用此