High-Precision Complementary Metamaterial Sensor Using Slotted Microstrip Transmission Line

Abdul Samad, Wei Dong Hu*, Waseem Shahzad, Leo P. Ligthart, Hamid Raza

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)

摘要

Metamaterial-based microwave sensor having novel and compact structure of the resonators and the slotted microstrip transmission line is proposed for highly precise measurement of dielectric properties of the materials under test (MUTs). The proposed sensor is designed and simulated on Rogers' substrate RO4003C by using the ANSYS HFSS software. A single and accumulative notch depth of-44.29 dB in the transmission coefficient (S21) is achieved at the resonant frequency of 5.15 GHz. The negative constitutive parameters (permittivity and permeability) are extracted from the S-parameters which are the basic property of metamaterials or left handed materials (LHMs). The proposed sensor is fabricated and measured through the PNA-X (N5247A). The sensitivity analysis is performed by placing various standard dielectric materials onto the sensor and measuring the shift in the resonant frequencies of the MUTs. A parabolic equation of the proposed sensor is formulated to approximate the resonant frequency and the relative permittivity of the MUTs. A very strong agreement among the simulated, measured, and calculated results is found which reveals that the proposed sensor is a highly precise sensor for the characterization of dielectric properties of the MUTs. Error analysis is performed to determine the accuracy of the proposed sensor. A very small percentage of error (0.81%) and a very low standard deviation are obtained which indicate high accuracy of the proposed sensor.

源语言英语
文章编号8888187
期刊Journal of Sensors
2021
DOI
出版状态已出版 - 2021

指纹

探究 'High-Precision Complementary Metamaterial Sensor Using Slotted Microstrip Transmission Line' 的科研主题。它们共同构成独一无二的指纹。

引用此