High-performance supercapacitors and batteries derived from activated banana-peel with porous structures

Yunya Zhang, Zan Gao, Ningning Song, Xiaodong Li*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

166 引用 (Scopus)

摘要

Carbonaceous materials derived from non-renewable and non-sustainable graphite and fossil fuels have been widely used in building supercapacitor and battery electrodes but the mining and fabrication processes are often hazardous and contaminative. Therefore, to derive activated carbon from renewable bio-mass materials is environmentally and socially significant. Here a unique and innovative solution is proposed to produce supercapacitors and batteries from banana peels. Banana peel, which is one of the most abundant and accessible bio-wastes, naturally processes hierarchically porous structure, making activated banana peel (ABP) an ideal backbone for loading electroactive nanomaterials. The ABP derived asymmetric supercapacitors exhibited superior rate capacity and cyclic ability, as well as a synergetic enhancement of energy density and power density because the interconnected porous structure stimulated the formation of urchin-like NiCo2O4 particles, prevented the aggregation of NiCo2O4 nanowires, and enhanced the electrolyte accessibility. Orderly arranged nanopores with unique Ni/graphene core/shell nanoparticles were created by annealing the Ni(NO3)2 solution-treated ABP. The lithium-sulfur (Li-S) batteries built by the ABP/Ni/graphene hybrid achieved exceptionally high electrochemical properties in terms of specific capacitance (1260.3 mAh g−1 at 0.2C), rate capability, and cycling robustness.

源语言英语
页(从-至)1257-1266
页数10
期刊Electrochimica Acta
222
DOI
出版状态已出版 - 20 12月 2016
已对外发布

指纹

探究 'High-performance supercapacitors and batteries derived from activated banana-peel with porous structures' 的科研主题。它们共同构成独一无二的指纹。

引用此