TY - JOUR
T1 - High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries
AU - Wang, Zhe
AU - Hou, Li Peng
AU - Zhang, Qian Kui
AU - Yao, Nan
AU - Chen, Aibing
AU - Huang, Jia Qi
AU - Zhang, Xue Qiang
N1 - Publisher Copyright:
© 2024
PY - 2024/4
Y1 - 2024/4
N2 - Electrolyte design is essential for stabilizing lithium metal anodes and localized high-concentration electrolyte (LHCE) is a promising one. However, the state-of-the-art LHCE remains insufficient to ensure long-cycling lithium metal anodes. Herein, regulating the solvation structure of lithium ions in LHCE by weakening the solvating power of diluents is proposed for improving LHCE performance. A diluent, 1,1,2,2,3,3,4,4-octafluoro-5-(1,1,2,2-tetrafluoroethoxy) pentane (OFE), with weaker solvating power is introduced to increase the proportion of aggregates (an anion interacts with more than two lithium ions, AGG-n) in electrolyte compared with the commonly used 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE). The decomposition of AGG-n in OFE-based LHCE intensifies the formation of anion-derived solid electrolyte interphase and improves the uniformity of lithium deposition. Lithium metal batteries with OFE-based LHCE deliver a superior lifespan of 190 cycles compared with 90 cycles of TTE-based LHCE under demanding conditions. Furthermore, a pouch cell with OFE-based LHCE delivers a specific energy of 417 Wh/kg and undergoes 49 cycles. This work provides guidance for designing high-performance electrolytes for lithium metal batteries.
AB - Electrolyte design is essential for stabilizing lithium metal anodes and localized high-concentration electrolyte (LHCE) is a promising one. However, the state-of-the-art LHCE remains insufficient to ensure long-cycling lithium metal anodes. Herein, regulating the solvation structure of lithium ions in LHCE by weakening the solvating power of diluents is proposed for improving LHCE performance. A diluent, 1,1,2,2,3,3,4,4-octafluoro-5-(1,1,2,2-tetrafluoroethoxy) pentane (OFE), with weaker solvating power is introduced to increase the proportion of aggregates (an anion interacts with more than two lithium ions, AGG-n) in electrolyte compared with the commonly used 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE). The decomposition of AGG-n in OFE-based LHCE intensifies the formation of anion-derived solid electrolyte interphase and improves the uniformity of lithium deposition. Lithium metal batteries with OFE-based LHCE deliver a superior lifespan of 190 cycles compared with 90 cycles of TTE-based LHCE under demanding conditions. Furthermore, a pouch cell with OFE-based LHCE delivers a specific energy of 417 Wh/kg and undergoes 49 cycles. This work provides guidance for designing high-performance electrolytes for lithium metal batteries.
KW - Diluents
KW - Electrolyte
KW - Lithium metal anodes
KW - Pouch cells
KW - Solid electrolyte interphase
UR - http://www.scopus.com/inward/record.url?scp=85178382349&partnerID=8YFLogxK
U2 - 10.1016/j.cclet.2023.108570
DO - 10.1016/j.cclet.2023.108570
M3 - Article
AN - SCOPUS:85178382349
SN - 1001-8417
VL - 35
JO - Chinese Chemical Letters
JF - Chinese Chemical Letters
IS - 4
M1 - 108570
ER -