High-entropy (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7 thermal barrier coating material with significantly enhanced fracture toughness

Donghui GUO, Feifei ZHOU*, Baosheng XU, Yiguang WANG, You WANG

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

12 引用 (Scopus)

摘要

Poor fracture toughness leads to premature failure of La2(Zr0.75Ce0.25)2O7 (LCZ) thermal barrier coatings in an elevated temperature service environment. A novel coating material, namely (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7 (LNSGY) based on the high-entropy concept, was successfully fabricated by solid-state sintering. The microstructure of LCZ and LNSGY was investigated by X-Ray Diffraction (XRD), Raman Spectrometer (RS), Transmission Electronic Microscopy (TEM) and Scanning Electron Microscopy (SEM). The fracture toughness of the LCZ and LNSGY ceramics was evaluated. The LNSGY has excellent high-temperature phase stability, and the grain size of LNSGY ceramic is smaller than that of LCZ ceramic at an elevated temperature due to the sluggish diffusion effect. Compared with LCZ (fracture toughness is (1.4 ± 0.1) MPa∙m1/2), the fracture toughness of LNSGY is significantly enhanced (fracture toughness is (2.0 ± 0.3) MPa∙m1/2). Therefore, the LNSGY can be a promising advanced thermal barrier coating material in the future.

源语言英语
页(从-至)556-564
页数9
期刊Chinese Journal of Aeronautics
36
4
DOI
出版状态已出版 - 4月 2023

指纹

探究 'High-entropy (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7 thermal barrier coating material with significantly enhanced fracture toughness' 的科研主题。它们共同构成独一无二的指纹。

引用此