TY - JOUR
T1 - Hierarchical mechanical metamaterials built with scalable tristable elements for ternary logic operation and amplitude modulation
AU - Zhang, Hang
AU - Wu, Jun
AU - Fang, Daining
AU - Zhang, Yihui
N1 - Publisher Copyright:
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
PY - 2021/2/24
Y1 - 2021/2/24
N2 - Multistable mechanical metamaterials are artificial materials whose microarchitectures offer more than two different stable configurations. Existing multistable mechanical metamaterials mainly rely on origami/kirigami-inspired designs, snap-through instability, and microstructured soft mechanisms, with mostly bistable fundamental unit cells. Scalable, tristable structural elements that can be built up to form mechanical metamaterials with an extremely large number of programmable stable configurations remains illusive. Here, we harness the elastic tensile/ compressive asymmetry of kirigami microstructures to design a class of scalable X-shaped tristable structures. Using these structure as building block elements, hierarchical mechanical metamaterials with one-dimensional (1D) cylindrical geometries, 2D square lattices, and 3D cubic/octahedral lattices are designed and demonstrated, with capabilities of torsional multistability or independent controlled multidirectional multistability. The number of stable states increases exponentially with the cell number of mechanical metamaterials. The versatile multistability and structural diversity allow demonstrative applications in mechanical ternary logic operators and amplitude modulators with unusual functionalities.
AB - Multistable mechanical metamaterials are artificial materials whose microarchitectures offer more than two different stable configurations. Existing multistable mechanical metamaterials mainly rely on origami/kirigami-inspired designs, snap-through instability, and microstructured soft mechanisms, with mostly bistable fundamental unit cells. Scalable, tristable structural elements that can be built up to form mechanical metamaterials with an extremely large number of programmable stable configurations remains illusive. Here, we harness the elastic tensile/ compressive asymmetry of kirigami microstructures to design a class of scalable X-shaped tristable structures. Using these structure as building block elements, hierarchical mechanical metamaterials with one-dimensional (1D) cylindrical geometries, 2D square lattices, and 3D cubic/octahedral lattices are designed and demonstrated, with capabilities of torsional multistability or independent controlled multidirectional multistability. The number of stable states increases exponentially with the cell number of mechanical metamaterials. The versatile multistability and structural diversity allow demonstrative applications in mechanical ternary logic operators and amplitude modulators with unusual functionalities.
UR - http://www.scopus.com/inward/record.url?scp=85102096742&partnerID=8YFLogxK
U2 - 10.1126/sciadv.abf1966
DO - 10.1126/sciadv.abf1966
M3 - Article
C2 - 33627434
AN - SCOPUS:85102096742
SN - 2375-2548
VL - 7
JO - Science advances
JF - Science advances
IS - 9
M1 - eabf1966
ER -