TY - JOUR
T1 - Hierarchical Disentangling Network for Building Extraction from Very High Resolution Optical Remote Sensing Imagery
AU - Li, Jianhao
AU - Zhuang, Yin
AU - Dong, Shan
AU - Gao, Peng
AU - Dong, Hao
AU - Chen, He
AU - Chen, Liang
AU - Li, Lianlin
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Building extraction using very high resolution (VHR) optical remote sensing imagery is an essential interpretation task that impacts human life. However, buildings in different environments exhibit various scales, complicated spatial distributions, and different imaging conditions. Additionally, with the spatial resolution of images increasing, there are diverse interior details and redundant context information present in building and background areas. Thus, the above-mentioned situations would create large intra-class variances and poor inter-class discrimination, leading to uncertain feature descriptions for building extraction, which would result in over-or under-extraction phenomena. In this article, a novel hierarchical disentangling network with an encoder–decoder architecture called HDNet is proposed to consider both the stable and uncertain feature description in a convolution neural network (CNN). Next, a hierarchical disentangling strategy is set up to individually generate strong and weak semantic zones using a newly designed feature disentangling module (FDM). Here, the strong and weak semantic zones set up the stable and uncertain description individually to determine a more stable semantic main body and uncertain semantic boundary of buildings. Next, a dual-stream semantic feature description is built to gradually integrate strong and weak semantic zones by the designed component feature fusion module (CFFM), which is able to generate a powerful semantic description for more complete and refined building extraction. Finally, extensive experiments are carried out on three published datasets (i.e., WHU satellite, WHU aerial, and INRIA), and the comparison results show that the proposed HDNet outperforms other state-of-the-art (SOTA) methods.
AB - Building extraction using very high resolution (VHR) optical remote sensing imagery is an essential interpretation task that impacts human life. However, buildings in different environments exhibit various scales, complicated spatial distributions, and different imaging conditions. Additionally, with the spatial resolution of images increasing, there are diverse interior details and redundant context information present in building and background areas. Thus, the above-mentioned situations would create large intra-class variances and poor inter-class discrimination, leading to uncertain feature descriptions for building extraction, which would result in over-or under-extraction phenomena. In this article, a novel hierarchical disentangling network with an encoder–decoder architecture called HDNet is proposed to consider both the stable and uncertain feature description in a convolution neural network (CNN). Next, a hierarchical disentangling strategy is set up to individually generate strong and weak semantic zones using a newly designed feature disentangling module (FDM). Here, the strong and weak semantic zones set up the stable and uncertain description individually to determine a more stable semantic main body and uncertain semantic boundary of buildings. Next, a dual-stream semantic feature description is built to gradually integrate strong and weak semantic zones by the designed component feature fusion module (CFFM), which is able to generate a powerful semantic description for more complete and refined building extraction. Finally, extensive experiments are carried out on three published datasets (i.e., WHU satellite, WHU aerial, and INRIA), and the comparison results show that the proposed HDNet outperforms other state-of-the-art (SOTA) methods.
KW - building extraction
KW - convolution neural networks
KW - encoding–decoding method
KW - hierarchical disentangling
KW - optical remote sensing imagery
KW - very high resolution
UR - http://www.scopus.com/inward/record.url?scp=85128513371&partnerID=8YFLogxK
U2 - 10.3390/rs14071767
DO - 10.3390/rs14071767
M3 - Article
AN - SCOPUS:85128513371
SN - 2072-4292
VL - 14
JO - Remote Sensing
JF - Remote Sensing
IS - 7
M1 - 1767
ER -