Hierarchical Control Strategy for the Hybrid Electric Propulsion System of a Flying Car with Engine Start-Stop System and Dynamic Coordination

Shumin Ruan, Yue Ma, Zhengchao Wei, Ningkang Yang, Chongbing Zhang, Changle Xiang

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

The fact that flying cars can run on the ground and in the air presents difficulties when designing their power supply system and control system. To tackle these issues, in this paper, the dynamic characteristics of a flying car with two generation units (GUs) are studied and a hierarchical control strategy is developed to enhance its economic efficiency. First, the models of the hybrid electric propulsion system (HEPS) and vehicular dynamics are built based on mechanism and experimental data. Then, a hierarchical control strategy that includes an upper-level energy management strategy (EMS) and a lower-level coordination control is designed for this system. A Deep reinforcement learning (DRL) algorithm is applied for EMS, considering the engine start-stop system and power distribution simultaneously. A distributed model predictive control (DMPC) algorithm is built for coordinated control of each power component, taking into account the influence of other power components when tracking the control targets to improve whole system performance. The simulation results demonstrate that the proposed hierarchical method can efficiently improve fuel economy by 11.8% compared to rule-based strategies, and the computational burden of DMPC is reduced by 87.1% compared to that of centralized model predictive control through distributed computing.

源语言英语
页(从-至)1
页数1
期刊IEEE Transactions on Transportation Electrification
DOI
出版状态已接受/待刊 - 2023

指纹

探究 'Hierarchical Control Strategy for the Hybrid Electric Propulsion System of a Flying Car with Engine Start-Stop System and Dynamic Coordination' 的科研主题。它们共同构成独一无二的指纹。

引用此