Hexagonal Convolutional Neural Network for Spatial Transcriptomics Classification

Jing Gao*, Fa Zhang*, Kai Hu*, Xuefeng Cui*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 5
  • Captures
    • Readers: 4
see details

摘要

Recent advances in spatial transcriptomics have enabled the comprehensive measurement of transcriptional profiles while retaining the spatial contextual information. Identifying spatial domains is a critical step in the analysis of spatially resolved transcriptomics. Existing unsupervised methods perform poorly on this task owing to the large amount of noise and dropout events in the transcriptomic profiles. To address this problem, we first extend an unsupervised algorithm to a supervised learning method that can identify useful features and reduce noise hindrance. Second, inspired by the classical convolution in convolutional neural networks (CNNs), we designed a regular hexagonal convolution to compensate for the missing gene expression patterns from adjacent nodes. Compared with the graph convolution in graph neural networks (GNNs), our hexagonal convolution can preserve the relative spatial location information of different nodes in graph-structured data. Third, based on the hexagonal convolution, a novel hexagonal Convolutional Neural Network (hexCNN) is proposed for spatial transcriptomics classification. Finally, we compared the proposed hexCNN with existing methods on the DLPFC dataset. The results show that hexCNN achieves a classification accuracy of 87.2% and an average Rand index (ARI) of 78.2% (1.9% and 3.3% higher than those of GNNs).

源语言英语
主期刊名Proceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
编辑Donald Adjeroh, Qi Long, Xinghua Shi, Fei Guo, Xiaohua Hu, Srinivas Aluru, Giri Narasimhan, Jianxin Wang, Mingon Kang, Ananda M. Mondal, Jin Liu
出版商Institute of Electrical and Electronics Engineers Inc.
200-205
页数6
ISBN(电子版)9781665468190
DOI
出版状态已出版 - 2022
活动2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022 - Las Vegas, 美国
期限: 6 12月 20228 12月 2022

出版系列

姓名Proceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022

会议

会议2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
国家/地区美国
Las Vegas
时期6/12/228/12/22

指纹

探究 'Hexagonal Convolutional Neural Network for Spatial Transcriptomics Classification' 的科研主题。它们共同构成独一无二的指纹。

引用此

Gao, J., Zhang, F., Hu, K., & Cui, X. (2022). Hexagonal Convolutional Neural Network for Spatial Transcriptomics Classification. 在 D. Adjeroh, Q. Long, X. Shi, F. Guo, X. Hu, S. Aluru, G. Narasimhan, J. Wang, M. Kang, A. M. Mondal, & J. Liu (编辑), Proceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022 (页码 200-205). (Proceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/BIBM55620.2022.9995701