Heurestic Optimization-Based Trajectory Optimization

Runqi Chai*, Kaiyuan Chen, Lingguo Cui, Senchun Chai, Gokhan Inalhan, Antonios Tsourdos

*此作品的通讯作者

科研成果: 书/报告/会议事项章节章节同行评审

摘要

Conventional optimization methods have certain problems in finding the optimal solution. The feasible solution space of a trajectory optimization model may be constrained to a relatively limited corridor due to numerous mission-related constraints, easily leading to local minimum or infeasible solution identification. This section focuses on an attempt to use a biased particle swarm optimization method to solve the constrained trajectory design problem. By adding a normalized objective that reflects the entire quantity of constraint violations, the suggested method reformulates the original issue into an unconstrained multi-criteria version. The algorithm also includes a local exploration operation, a novel-bias selection method, and an evolution restart strategy to speed up progress during the evolutionary process. The success of the suggested optimization technique is confirmed by numerical simulation experiments that were generated from a confined atmospheric entry trajectory optimization example. Executing a number of comparative case studies also demonstrates the main benefits of the suggested strategy.

源语言英语
主期刊名Springer Aerospace Technology
出版商Springer Science and Business Media Deutschland GmbH
43-75
页数33
DOI
出版状态已出版 - 2023

出版系列

姓名Springer Aerospace Technology
Part F1477
ISSN(印刷版)1869-1730
ISSN(电子版)1869-1749

指纹

探究 'Heurestic Optimization-Based Trajectory Optimization' 的科研主题。它们共同构成独一无二的指纹。

引用此