Heterobimetallic [NiCo] integration in a hydrogenase mimic for boosting light-driven hydrogen evolution in CaTiO3

Kang Li, Juanji Hong, Ningning Song*, Zhanjun Guo*, Minmin Liang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Light-drive hydrogen production using titanium-based perovskite is one sustainable way to reduce current reliance on fossil fuels, but its wide applications are still limited by high electron–hole recombination and sluggish surface reaction. Thus, the developments for low-cost and highly efficient co-catalysts remain urgent. Inspired by natural [NiFe]-hydrogenase active center structure, a hydrogenase-mimic, NiCo2S4 nanozyme was synthesized, and subsequently decorated onto the CaTiO3 to catalyze the hydrogen evolution reaction (HER). Among the following test, CaTiO3 with a 15% loading of NiCo2S4 nanozyme exhibited the highest HER rate of 307.76 µmol·g−1·h−1, which is 60 times higher than that of the CaTiO3 alone. The results reveal that NiCo2S4 not only significantly increased the charge separation efficiency of the photogenerated carriers, but also substantively lowered the HER activation energy. Mechanism studies show that NiCo2S4 readily splits H2O by forming the Ni(OH)-Co intermediate and only Ni in the bimetallic center alters the oxidation state during the HER process in a manner analogous to the [NiFe]-hydrogenase. In contrast to the often-expensive synthetic catalysts that rely on rare elements such as ruthenium and platinum, this study shows a promising way to develop the nature-inspired cocatalysts to enhance the photocatalysts’ HER performance.

源语言英语
期刊Nano Research
DOI
出版状态已接受/待刊 - 2024

指纹

探究 'Heterobimetallic [NiCo] integration in a hydrogenase mimic for boosting light-driven hydrogen evolution in CaTiO3' 的科研主题。它们共同构成独一无二的指纹。

引用此