Helical vortices with small cross-section for 3D incompressible Euler equation

Daomin Cao, Jie Wan*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

4 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 3
  • Captures
    • Readers: 1
see details

摘要

In this article, we construct traveling-rotating helical vortices with small cross-section to the 3D incompressible Euler equations in an infinite pipe, which tend asymptotically to singular helical vortex filament evolved by the binormal curvature flow. The construction is based on studying a general semilinear elliptic problem in divergence form {−ε2div(K(x)∇u)=(u−q|ln⁡ε|)+p,x∈Ω,u=0,x∈∂Ω, for small values of ε. Helical vortex solutions concentrating near several helical filaments with polygonal symmetry are also constructed.

源语言英语
文章编号109836
期刊Journal of Functional Analysis
284
7
DOI
出版状态已出版 - 1 4月 2023

引用此

Cao, D., & Wan, J. (2023). Helical vortices with small cross-section for 3D incompressible Euler equation. Journal of Functional Analysis, 284(7), 文章 109836. https://doi.org/10.1016/j.jfa.2022.109836