TY - JOUR
T1 - HEAT KERNELS FOR REFLECTED DIFFUSIONS WITH JUMPS ON INNER UNIFORM DOMAINS
AU - Chen, Zhen Qing
AU - Kim, Panki
AU - Kumagai, Takashi
AU - Wang, Jian
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/10/1
Y1 - 2022/10/1
N2 - In this paper, we study sharp two-sided heat kernel estimates for a large class of symmetric reflected diffusions with jumps on the closure of an inner uniform domain D in a length metric space. The length metric is the intrinsic metric of a strongly local Dirichlet form. When D is an inner uniform domain in the Euclidean space, a prototype for a special case of the processes under consideration is symmetric reflected diffusions with jumps on D, whose infinitesimal generators are non-local (pseudo-differential) operators L on D of the form Lu(x) = 1/2 d ∑ i,j=1 ∂/∂xi (aij(x) ∂u(x)/∂xj)) +lim ε↓0 ∫ {y∈D: ρD(y,x)>ε}(u(y)−u(x))J(x, y) dy satisfying “Neumann boundary condition”. Here, ρD(x, y) is the length metric on D, A(x) = (aij(x))1≤i,j≤d is a measurable d×d matrix-valued function on D that is uniformly elliptic and bounded, and J(x, y) := 1/Φ(ρD 1 (x, y)) ∫ [α1,α2] c(α, x, y)/ρD(x, y)d+α ν(dα) where ν is a finite measure on [α1, α2] ⊂ (0, 2), Φ is an increasing function on [0, ∞) with c1ec2rβ ≤ Φ(r) ≤ c3ec4rβ for some β ∈ [0, ∞], and c(α, x, y) is a jointly measurable function that is bounded between two positive constants and is symmetric in (x, y).
AB - In this paper, we study sharp two-sided heat kernel estimates for a large class of symmetric reflected diffusions with jumps on the closure of an inner uniform domain D in a length metric space. The length metric is the intrinsic metric of a strongly local Dirichlet form. When D is an inner uniform domain in the Euclidean space, a prototype for a special case of the processes under consideration is symmetric reflected diffusions with jumps on D, whose infinitesimal generators are non-local (pseudo-differential) operators L on D of the form Lu(x) = 1/2 d ∑ i,j=1 ∂/∂xi (aij(x) ∂u(x)/∂xj)) +lim ε↓0 ∫ {y∈D: ρD(y,x)>ε}(u(y)−u(x))J(x, y) dy satisfying “Neumann boundary condition”. Here, ρD(x, y) is the length metric on D, A(x) = (aij(x))1≤i,j≤d is a measurable d×d matrix-valued function on D that is uniformly elliptic and bounded, and J(x, y) := 1/Φ(ρD 1 (x, y)) ∫ [α1,α2] c(α, x, y)/ρD(x, y)d+α ν(dα) where ν is a finite measure on [α1, α2] ⊂ (0, 2), Φ is an increasing function on [0, ∞) with c1ec2rβ ≤ Φ(r) ≤ c3ec4rβ for some β ∈ [0, ∞], and c(α, x, y) is a jointly measurable function that is bounded between two positive constants and is symmetric in (x, y).
KW - Reflected diffusions with jumps
KW - inner uniform domain; heat kernel
KW - symmetric Dirichlet form
UR - http://www.scopus.com/inward/record.url?scp=85139556031&partnerID=8YFLogxK
U2 - 10.1090/tran/8678
DO - 10.1090/tran/8678
M3 - Article
AN - SCOPUS:85139556031
SN - 0002-9947
VL - 375
SP - 6797
EP - 6841
JO - Transactions of the American Mathematical Society
JF - Transactions of the American Mathematical Society
IS - 10
ER -