Heat kernels for non-symmetric diffusion operators with jumps

Zhen Qing Chen, Eryan Hu*, Longjie Xie, Xicheng Zhang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

42 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 42
  • Captures
    • Readers: 7
see details

摘要

For d⩾2, we prove the existence and uniqueness of heat kernels to the following time-dependent second order diffusion operator with jumps: Lt:=[Formula presented]∑i,j=1daij(t,x)∂ij 2+∑i=1dbi(t,x)∂i+Lt κ, where a=(aij) is a uniformly bounded, elliptic, and Hölder continuous matrix-valued function, b belongs to some suitable Kato's class, and Lt κ is a non-local α-stable-type operator with bounded kernel κ. Moreover, we establish sharp two-sided estimates, gradient estimate and fractional derivative estimate for the heat kernel under some mild conditions.

源语言英语
页(从-至)6576-6634
页数59
期刊Journal of Differential Equations
263
10
DOI
出版状态已出版 - 15 11月 2017
已对外发布

指纹

探究 'Heat kernels for non-symmetric diffusion operators with jumps' 的科研主题。它们共同构成独一无二的指纹。

引用此

Chen, Z. Q., Hu, E., Xie, L., & Zhang, X. (2017). Heat kernels for non-symmetric diffusion operators with jumps. Journal of Differential Equations, 263(10), 6576-6634. https://doi.org/10.1016/j.jde.2017.07.023