TY - JOUR
T1 - Heat kernels and analyticity of non-symmetric jump diffusion semigroups
AU - Chen, Zhen Qing
AU - Zhang, Xicheng
N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - Let d⩾ 1 and α∈ (0, 2). Consider the following non-local and non-symmetric Lévy-type operator on Rd: (Formula presented.), where 0 < κ0⩽ κ(x, z) ⩽ κ1, κ(x, z) = κ(x, - z) , and | κ(x, z) - κ(y, z) | ⩽ κ2|x-y| β for some β∈ (0, 1). Using Levi’s method, we construct the fundamental solution (also called heat kernel) pακ(t,x,y) of Lακ, and establish its sharp two-sided estimates as well as its fractional derivative and gradient estimates. We also show that pακ(t,x,y) is jointly Hölder continuous in (t, x). The lower bound heat kernel estimate is obtained by using a probabilistic argument. The fundamental solution of Lακ gives rise a Feller process {X, Px, x∈ Rd} on Rd. We determine the Lévy system of X and show that Px solves the martingale problem for (Lακ,Cb2(Rd)). Furthermore, we show that the C0-semigroup associated with Lακ is analytic in Lp(Rd) for every p∈ [1, ∞). A maximum principle for solutions of the parabolic equation ∂tu=Lακu is also established. As an application of the main result of this paper, sharp two-sided estimates for the transition density of the solution of d Xt= A(Xt-) d Yt is derived, where Y is a (rotationally) symmetric stable process on Rd and A(x) is a Hölder continuous d× d matrix-valued function on Rd that is uniformly elliptic and bounded.
AB - Let d⩾ 1 and α∈ (0, 2). Consider the following non-local and non-symmetric Lévy-type operator on Rd: (Formula presented.), where 0 < κ0⩽ κ(x, z) ⩽ κ1, κ(x, z) = κ(x, - z) , and | κ(x, z) - κ(y, z) | ⩽ κ2|x-y| β for some β∈ (0, 1). Using Levi’s method, we construct the fundamental solution (also called heat kernel) pακ(t,x,y) of Lακ, and establish its sharp two-sided estimates as well as its fractional derivative and gradient estimates. We also show that pακ(t,x,y) is jointly Hölder continuous in (t, x). The lower bound heat kernel estimate is obtained by using a probabilistic argument. The fundamental solution of Lακ gives rise a Feller process {X, Px, x∈ Rd} on Rd. We determine the Lévy system of X and show that Px solves the martingale problem for (Lακ,Cb2(Rd)). Furthermore, we show that the C0-semigroup associated with Lακ is analytic in Lp(Rd) for every p∈ [1, ∞). A maximum principle for solutions of the parabolic equation ∂tu=Lακu is also established. As an application of the main result of this paper, sharp two-sided estimates for the transition density of the solution of d Xt= A(Xt-) d Yt is derived, where Y is a (rotationally) symmetric stable process on Rd and A(x) is a Hölder continuous d× d matrix-valued function on Rd that is uniformly elliptic and bounded.
KW - Discontinuous Markov process
KW - Fractional derivative estimate
KW - Heat kernel estimate
KW - Levi’s method
KW - Lévy system
KW - Martingale problem
KW - Non-symmetric stable-like operator
KW - Stable process
KW - Stochastic differential equation
UR - http://www.scopus.com/inward/record.url?scp=84929121108&partnerID=8YFLogxK
U2 - 10.1007/s00440-015-0631-y
DO - 10.1007/s00440-015-0631-y
M3 - Article
AN - SCOPUS:84929121108
SN - 0178-8051
VL - 165
SP - 267
EP - 312
JO - Probability Theory and Related Fields
JF - Probability Theory and Related Fields
IS - 1-2
ER -