摘要
We construct the heat kernel of the 1=2-order Laplacian perturbed by a first-order gradient term in Hölder spaces and a zero-order potential term in a generalized Kato class, and obtain sharp two-sided estimates as well as a gradient estimate of the heat kernel, where the proof of the lower bound is based on a probabilistic approach.
源语言 | 英语 |
---|---|
页(从-至) | 221-263 |
页数 | 43 |
期刊 | Studia Mathematica |
卷 | 224 |
期 | 3 |
DOI | |
出版状态 | 已出版 - 2014 |
已对外发布 | 是 |
指纹
探究 'Heat kernel estimates for critical fractional diffusion operators' 的科研主题。它们共同构成独一无二的指纹。引用此
Xie, L., & Zhang, X. (2014). Heat kernel estimates for critical fractional diffusion operators. Studia Mathematica, 224(3), 221-263. https://doi.org/10.4064/sm224-3-3