摘要
Let (X, g) be a product cone with the metric g= dr2+ r2h , where X= C(Y) = (0 , ∞) r× Y and the cross section Y is a (n- 1) -dimensional closed Riemannian manifold (Y, h). We study the upper boundedness of heat kernel associated with the operator LV= - Δ g+ Vr- 2 , where - Δ g is the positive Friedrichs extension Laplacian on X and V= V(y) r- 2 and V∈ C∞(Y) is a real function such that the operator - Δ h+ V+ (n- 2) 2/ 4 is a strictly positive operator on L2(Y) . The new ingredient of the proof is the Hadamard parametrix and finite propagation speed of wave operator on Y.
源语言 | 英语 |
---|---|
文章编号 | 284 |
期刊 | Journal of Geometric Analysis |
卷 | 33 |
期 | 9 |
DOI | |
出版状态 | 已出版 - 9月 2023 |
指纹
探究 'Heat Kernel Estimate in a Conical Singular Space' 的科研主题。它们共同构成独一无二的指纹。引用此
Huang, X., & Zhang, J. (2023). Heat Kernel Estimate in a Conical Singular Space. Journal of Geometric Analysis, 33(9), 文章 284. https://doi.org/10.1007/s12220-023-01348-0