Hörmander’s Hypoelliptic Theorem for Nonlocal Operators

Zimo Hao, Xuhui Peng*, Xicheng Zhang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 2
  • Captures
    • Readers: 2
see details

摘要

In this paper we show the Hörmander hypoelliptic theorem for nonlocal operators by a purely probabilistic method: the Malliavin calculus. Roughly speaking, under general Hörmander’s Lie bracket conditions, we show the regularization effect of discontinuous Lévy noises for possibly degenerate stochastic differential equations with jumps. To treat the large jumps, we use the perturbation argument together with interpolation techniques and some short time asymptotic estimates of the semigroup. As an application, we show the existence of fundamental solutions for operator ∂t- K, where K is the following nonlocal kinetic operator: Kf(x,v)=p.v.∫Rd(f(x,v+w)-f(x,v))κ(x,v,w)|w|d+αdw+v·∇xf(x,v)+b(x,v)·∇vf(x,v).Here κ0-1⩽κ(x,v,w)⩽κ0 belongs to Cb∞(R3d) and is symmetric in w, p.v. stands for the Cauchy principal value, and b∈Cb∞(R2d;Rd).

源语言英语
页(从-至)1870-1916
页数47
期刊Journal of Theoretical Probability
34
4
DOI
出版状态已出版 - 12月 2021
已对外发布

指纹

探究 'Hörmander’s Hypoelliptic Theorem for Nonlocal Operators' 的科研主题。它们共同构成独一无二的指纹。

引用此

Hao, Z., Peng, X., & Zhang, X. (2021). Hörmander’s Hypoelliptic Theorem for Nonlocal Operators. Journal of Theoretical Probability, 34(4), 1870-1916. https://doi.org/10.1007/s10959-020-01020-1