Hölder regularity and gradient estimates for sdes driven by cylindrical α-stable processes*

Zhen Qing Chen, Zimo Hao, Xicheng Zhang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

7 引用 (Scopus)

摘要

We establish Hölder regularity and gradient estimates for the transition semigroup of the solutions to the following SDE: dXt = σ(t, Xt−)dZt + b(t, Xt)dt, X0 = x ∈ Rd, where (Zt)t≥0 is a d-dimensional cylindrical α-stable process with α ∈ (0, 2), σ(t, x): R+ × Rd → Rd ⊗ Rd is bounded measurable, uniformly nondegenerate and Lipschitz continuous in x uniformly in t, and b(t, x): R+ × Rd → Rd is bounded β-Hölder continuous in x uniformly in t with β ∈ [0, 1] satisfying α + β > 1. Moreover, we also show the existence and regularity of the distributional density of X(t, x). Our proof is based on Littlewood-Paley’s theory.

源语言英语
文章编号137
页(从-至)1-23
页数23
期刊Electronic Journal of Probability
25
DOI
出版状态已出版 - 2020
已对外发布

指纹

探究 'Hölder regularity and gradient estimates for sdes driven by cylindrical α-stable processes*' 的科研主题。它们共同构成独一无二的指纹。

引用此