TY - JOUR
T1 - GT-HAD
T2 - Gated Transformer for Hyperspectral Anomaly Detection
AU - Lian, Jie
AU - Wang, Lizhi
AU - Sun, He
AU - Huang, Hua
N1 - Publisher Copyright:
IEEE
PY - 2024
Y1 - 2024
N2 - Hyperspectral anomaly detection (HAD) aims to distinguish between the background and anomalies in a scene, which has been widely adopted in various applications. Deep neural network (DNN)-based methods have emerged as the predominant solution, wherein the standard paradigm is to discern the background and anomalies based on the error of self-supervised hyperspectral image (HSI) reconstruction. However, current DNN-based methods cannot guarantee correspondence between the background, anomalies, and reconstruction error, which limits the performance of HAD. In this article, we propose a novel gated transformer network for HAD (GT-HAD). Our key observation is that the spatial–spectral similarity in HSI can effectively distinguish between the background and anomalies, which aligns with the fundamental definition of HAD. Consequently, we develop GT-HAD to exploit the spatial–spectral similarity during HSI reconstruction. GT-HAD consists of two distinct branches that model the features of the background and anomalies, respectively, with content similarity as constraints. Furthermore, we introduce an adaptive gating unit to regulate the activation states of these two branches based on a content-matching method (CMM). Extensive experimental results demonstrate the superior performance of GT-HAD. The original code is publicly available at https://github.com/jeline0110/ GT-HAD, along with a comprehensive benchmark of state-of-the-art HAD methods.
AB - Hyperspectral anomaly detection (HAD) aims to distinguish between the background and anomalies in a scene, which has been widely adopted in various applications. Deep neural network (DNN)-based methods have emerged as the predominant solution, wherein the standard paradigm is to discern the background and anomalies based on the error of self-supervised hyperspectral image (HSI) reconstruction. However, current DNN-based methods cannot guarantee correspondence between the background, anomalies, and reconstruction error, which limits the performance of HAD. In this article, we propose a novel gated transformer network for HAD (GT-HAD). Our key observation is that the spatial–spectral similarity in HSI can effectively distinguish between the background and anomalies, which aligns with the fundamental definition of HAD. Consequently, we develop GT-HAD to exploit the spatial–spectral similarity during HSI reconstruction. GT-HAD consists of two distinct branches that model the features of the background and anomalies, respectively, with content similarity as constraints. Furthermore, we introduce an adaptive gating unit to regulate the activation states of these two branches based on a content-matching method (CMM). Extensive experimental results demonstrate the superior performance of GT-HAD. The original code is publicly available at https://github.com/jeline0110/ GT-HAD, along with a comprehensive benchmark of state-of-the-art HAD methods.
KW - Anomaly detection
KW - Content similarity
KW - Feature extraction
KW - Hyperspectral imaging
KW - Image reconstruction
KW - Task analysis
KW - Tensors
KW - Transformers
KW - gating unit
KW - hyperspectral anomaly detection (HAD)
KW - transformer
UR - http://www.scopus.com/inward/record.url?scp=85187281632&partnerID=8YFLogxK
U2 - 10.1109/TNNLS.2024.3355166
DO - 10.1109/TNNLS.2024.3355166
M3 - Article
AN - SCOPUS:85187281632
SN - 2162-237X
SP - 1
EP - 15
JO - IEEE Transactions on Neural Networks and Learning Systems
JF - IEEE Transactions on Neural Networks and Learning Systems
ER -