Graph Neural Network-Based Coflow Scheduling in Data Center Networks

Zehua Guo*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节章节同行评审

1 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 3
see details

摘要

In this chapter, we introduce DeepWeave, a DRL framework to generate coflow scheduling policies. DeepWeave works for both the intra-coflow scheduling and inter-coflow scheduling. To improve the inter-coflow scheduling ability in the job, DeepWeave employs a GNN to process directed-acyclic graph information. DeepWeave learns from the historic workload trace to train the neural networks of the DRL agent and encodes the scheduling policy in the neural networks, which make coflow scheduling decisions without expert knowledge or a pre-assumed model.

源语言英语
主期刊名SpringerBriefs in Computer Science
出版商Springer
53-65
页数13
DOI
出版状态已出版 - 2022

出版系列

姓名SpringerBriefs in Computer Science
ISSN(印刷版)2191-5768
ISSN(电子版)2191-5776

指纹

探究 'Graph Neural Network-Based Coflow Scheduling in Data Center Networks' 的科研主题。它们共同构成独一无二的指纹。

引用此

Guo, Z. (2022). Graph Neural Network-Based Coflow Scheduling in Data Center Networks. 在 SpringerBriefs in Computer Science (页码 53-65). (SpringerBriefs in Computer Science). Springer. https://doi.org/10.1007/978-981-19-4874-9_5