GMD-Based Hybrid Beamforming for Large Reconfigurable Intelligent Surface Assisted Millimeter-Wave Massive MIMO

Keke Ying, Zhen Gao*, Shanxiang Lyu, Yongpeng Wu, Hua Wang, Mohamed Slim Alouini

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

128 引用 (Scopus)

摘要

Reconfigurable intelligent surface (RIS) is considered to be an energy-efficient approach to reshape the wireless environment for improved throughput. Its passive feature greatly reduces the energy consumption, which makes RIS a promising technique for enabling the future smart city. Existing beamforming designs for RIS mainly focus on optimizing the spectral efficiency for single carrier systems. Meanwhile, complicated bit/power allocation on different spatial domain subchannels needs to be designed for better bit error rate (BER) performance in conventional singular value decomposition-based beamforming. To avoid this, in this paper, we propose a geometric mean decomposition-based beamforming for RIS-assisted millimeter wave (mmWave) hybrid MIMO systems. In this way, multiple parallel data streams in the spatial domain can be considered to have the same channel gain, so that the better BER can be achieved without sophisticated bit/power allocation. Moreover, by exploiting the common angular-domain sparsity of mmWave massive MIMO channels over different subcarriers, a simultaneous orthogonal matching pursuit algorithm is utilized to obtain the optimal multiple beams from an oversampling 2D-DFT codebook. Besides, by only leveraging the angle of arrival and angle of departure associated with the line of sight (LoS) channels, we further design the phase shifters for RIS by maximizing the array gain for LoS channel. Simulation results show that the proposed scheme can achieve better BER performance than conventional approaches. Our work is an initial attempt to discuss the broadband beamforming for RIS-assisted mmWave massive MIMO with the hybrid architecture.

源语言英语
文章编号8964330
页(从-至)19530-19539
页数10
期刊IEEE Access
8
DOI
出版状态已出版 - 2020

指纹

探究 'GMD-Based Hybrid Beamforming for Large Reconfigurable Intelligent Surface Assisted Millimeter-Wave Massive MIMO' 的科研主题。它们共同构成独一无二的指纹。

引用此