Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system involving a tensor-valued sensitivity with saturation

Ji Liu*, Yifu Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

48 引用 (Scopus)

摘要

This paper is concerned with the following Keller–Segel–Navier–Stokes system {nt+u⋅∇n=Δn−∇⋅(nS(x,n,c)∇c),x∈Ω, t>0,ct+u⋅∇c=Δc−c+n,x∈Ω, t>0,ut+κ(u⋅∇)u=Δu+∇P+n∇ϕ,x∈Ω, t>0,∇⋅u=0,x∈Ω, t>0, where Ω⊂R3 is a bounded domain with smooth boundary ∂Ω, κ∈R and S denotes a given tensor-valued function fulfilling |S(x,n,c)|≤CS(1+n)α with some CS>0 and α>0. As the case κ=0 has been considered in [25], it is shown in the present paper that the corresponding initial–boundary problem with κ≠0 admits at least one global weak solution if α≥37.

源语言英语
页(从-至)5271-5305
页数35
期刊Journal of Differential Equations
262
10
DOI
出版状态已出版 - 15 5月 2017

指纹

探究 'Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system involving a tensor-valued sensitivity with saturation' 的科研主题。它们共同构成独一无二的指纹。

引用此