Global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant

Peter Y.H. Pang, Yifu Wang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

33 引用 (Scopus)

摘要

This paper deals with the cancer invasion model {ut=Δu−χ∇⋅(u∇v)−ξ∇⋅(u∇w)+μu(1−u−w),x∈Ω,t>0,vt=Δv−v+u,x∈Ω,t>0,wt=−vw+ηw(1−w−u),x∈Ω,t>0 in a bounded smooth domain Ω⊂R2 with zero-flux boundary conditions, where χ,ξ, μ and η are positive parameters. Compared to previous mathematical studies, the novelty here lies in: first, our treatment of the full parabolic chemotaxis–haptotaxis system; and second, allowing for positive values of η, reflecting processes with self-remodeling of the extracellular matrix. Under appropriate regularity assumptions on the initial data (u0,v0,w0), by using adapted Lp-estimate techniques, we prove the global existence and uniqueness of classical solutions when μ is sufficiently large, i.e., in the high cell proliferation rate regime.

源语言英语
页(从-至)1269-1292
页数24
期刊Journal of Differential Equations
263
2
DOI
出版状态已出版 - 15 7月 2017

指纹

探究 'Global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant' 的科研主题。它们共同构成独一无二的指纹。

引用此