TY - GEN
T1 - Global Context Enhanced Graph Neural Networks for Session-based Recommendation
AU - Wang, Ziyang
AU - Wei, Wei
AU - Cong, Gao
AU - Li, Xiao Li
AU - Mao, Xian Ling
AU - Qiu, Minghui
N1 - Publisher Copyright:
© 2020 ACM.
PY - 2020/7/25
Y1 - 2020/7/25
N2 - Session-based recommendation (SBR) is a challenging task, which aims at recommending items based on anonymous behavior sequences. Almost all the existing solutions for SBR model user preference only based on the current session without exploiting the other sessions, which may contain both relevant and irrelevant item-transitions to the current session. This paper proposes a novel approach, called Global Context Enhanced Graph Neural Networks (GCE-GNN) to exploit item transitions over all sessions in a more subtle manner for better inferring the user preference of the current session. Specifically, GCE-GNN learns two levels of item embeddings from session graph and global graph, respectively: (i) Session graph, which is to learn the session-level item embedding by modeling pairwise item-transitions within the current session; and (ii) Global graph, which is to learn the global-level item embedding by modeling pairwise item-transitions over all sessions. In GCE-GNN, we propose a novel global-level item representation learning layer, which employs a session-aware attention mechanism to recursively incorporate the neighbors' embeddings of each node on the global graph. We also design a session-level item representation learning layer, which employs a GNN on the session graph to learn session-level item embeddings within the current session. Moreover, GCE-GNN aggregates the learnt item representations in the two levels with a soft attention mechanism. Experiments on three benchmark datasets demonstrate that GCE-GNN outperforms the state-of-the-art methods consistently.
AB - Session-based recommendation (SBR) is a challenging task, which aims at recommending items based on anonymous behavior sequences. Almost all the existing solutions for SBR model user preference only based on the current session without exploiting the other sessions, which may contain both relevant and irrelevant item-transitions to the current session. This paper proposes a novel approach, called Global Context Enhanced Graph Neural Networks (GCE-GNN) to exploit item transitions over all sessions in a more subtle manner for better inferring the user preference of the current session. Specifically, GCE-GNN learns two levels of item embeddings from session graph and global graph, respectively: (i) Session graph, which is to learn the session-level item embedding by modeling pairwise item-transitions within the current session; and (ii) Global graph, which is to learn the global-level item embedding by modeling pairwise item-transitions over all sessions. In GCE-GNN, we propose a novel global-level item representation learning layer, which employs a session-aware attention mechanism to recursively incorporate the neighbors' embeddings of each node on the global graph. We also design a session-level item representation learning layer, which employs a GNN on the session graph to learn session-level item embeddings within the current session. Moreover, GCE-GNN aggregates the learnt item representations in the two levels with a soft attention mechanism. Experiments on three benchmark datasets demonstrate that GCE-GNN outperforms the state-of-the-art methods consistently.
KW - graph neural network
KW - recommendation system
KW - session-based recommendation
UR - http://www.scopus.com/inward/record.url?scp=85090152951&partnerID=8YFLogxK
U2 - 10.1145/3397271.3401142
DO - 10.1145/3397271.3401142
M3 - Conference contribution
AN - SCOPUS:85090152951
T3 - SIGIR 2020 - Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval
SP - 169
EP - 178
BT - SIGIR 2020 - Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval
PB - Association for Computing Machinery, Inc
T2 - 43rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020
Y2 - 25 July 2020 through 30 July 2020
ER -