Global-Aware Registration of Less-Overlap RGB-D Scans

Che Sun, Yunde Jia, Yi Guo, Yuwei Wu*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

We propose a novel method of registering less-overlap RGB-D scans. Our method learns global information of a scene to construct a panorama, and aligns RGB-D scans to the panorama to perform registration. Different from existing methods that use local feature points to register less-overlap RGB-D scans and mismatch too much, we use global information to guide the registration, thereby allevi-ating the mismatching problem by preserving global consis-tency of alignments. To this end, we build a scene inference network to construct the panorama representing global in-formation. We introduce a reinforcement learning strategy to iteratively align RGB-D scans with the panorama and re-fine the panorama representation, which reduces the noise of global information and preserves global consistency of both geometric and photometric alignments. Experimental results on benchmark datasets including SUNCG, Matterport, and ScanNet show the superiority of our method.

源语言英语
主期刊名Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
出版商IEEE Computer Society
6347-6356
页数10
ISBN(电子版)9781665469463
DOI
出版状态已出版 - 2022
活动2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, 美国
期限: 19 6月 202224 6月 2022

出版系列

姓名Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
2022-June
ISSN(印刷版)1063-6919

会议

会议2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
国家/地区美国
New Orleans
时期19/06/2224/06/22

指纹

探究 'Global-Aware Registration of Less-Overlap RGB-D Scans' 的科研主题。它们共同构成独一无二的指纹。

引用此