Genetic algorithm study on control strategy parameter optimization of hybrid powertrain system

Song Qiang, Zhao Ping

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Based on the optimization design, the mathematical model of the control strategy parameter optimization taking the minimum fuel consumption as the objective function is established. Then, taking hybrid bulldozer as an example, the genetic algorithm is used to solve the optimization problem. Through optimization, the fuel consumption reduces 4.1% further more compared with conventional bulldozer under the same working condition. Using this method, it is easier to find a set of optimal parameters to shorten the calibrated time of the controller in a real hybrid electric vehicle.

源语言英语
主期刊名Proceedings of 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2017
编辑Bing Xu
出版商Institute of Electrical and Electronics Engineers Inc.
2256-2260
页数5
ISBN(电子版)9781467389778
DOI
出版状态已出版 - 29 9月 2017
活动2nd IEEE Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2017 - Chongqing, 中国
期限: 25 3月 201726 3月 2017

出版系列

姓名Proceedings of 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2017

会议

会议2nd IEEE Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2017
国家/地区中国
Chongqing
时期25/03/1726/03/17

指纹

探究 'Genetic algorithm study on control strategy parameter optimization of hybrid powertrain system' 的科研主题。它们共同构成独一无二的指纹。

引用此